Non-classical orthogonality relations for big and little q-Jacobi polynomials
نویسندگان
چکیده
Big q-Jacobi polynomials {Pn(·; a, b, c; q)}∞n=0 are classically defined for 0 < a < q −1, 0 < b < q−1 and c < 0. For the family of little q-Jacobi polynomials {pn(·; a, b|q)}∞n=0, classical considerations restrict the parameters imposing 0 < a < q−1 and b < q−1. In this work we extend both families in such a way that wider sets of parameters are allowed, and we establish orthogonality conditions for those cases for which Favard’s theorem does not work. As a by-product, we obtain similar results for the families of big and little q-Laguerre polynomials. c © 2009 Elsevier Inc. All rights reserved.
منابع مشابه
On Some Limit Cases of Askey-wilson Polynomials
We show that limit transitions from Askey-Wilson polynomials to q-Racah, little and big q-Jacobi polynomials can be made rigorous on the level of their orthogonality measures in a suitable weak sense. This allows us to derive the orthogonality relations and norm evaluations for the q-Racah polynomials, little and big q-Jacobi polynomials by taking limits in the orthogonality relations and norm ...
متن کاملOn Bc Type Basic Hypergeometric Orthogonal Polynomials
Abstract. The five parameter family of multivariable Askey-Wilson polynomials is studied with four parameters generically complex. The multivariable Askey-Wilson polynomials form an orthogonal system with respect to an explicit (in general complex) measure. A partially discrete orthogonality measure is obtained by shifting the contour to the torus while picking up residues. A parameter domain i...
متن کاملUvA - DARE ( Digital Academic Repository ) Multivariable big and little q - Jacobi polynomials
A four-parameter family of multivariable big q-Jacobi polynomials and a threeparameter family of multivariable little q-Jacobi polynomials are introduced. For both families, full orthogonality is proved with the help of a second-order q-difference operator which is diagonalized by the multivariable polynomials. A link is made between the orthogonality measures and R. Askey’s q-extensions of Sel...
متن کاملdecompositions , q = 0 limits , and p - adic interpretations of some q - hypergeometric orthogonal polynomials
For little q-Jacobi polynomials, q-Hahn polynomials and big q-Jacobi polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as decompositions into a lower triangular matrix times upper triangular matrix. We develop a general theory of such decompositions rela...
متن کامل8 N ov 2 00 4 Lower - upper triangular decompositions , q = 0 limits , and p - adic interpretations of some q - hypergeometric orthogonal polynomials Tom
For little q-Jacobi polynomials, q-Hahn polynomials and big q-Jacobi polynomials we give particular q-hypergeometric series representations in which the termwise q = 0 limit can be taken. When rewritten in matrix form, these series representations can be viewed as decompositions into a lower triangular matrix times upper triangular matrix. We develop a general theory of such decompositions rela...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 162 شماره
صفحات -
تاریخ انتشار 2010